Encapsulate LiveData

Create internal and external version of the variables that need to be passed out of our class, so that other classes cannot modify the internal data.

import ...

class MyViewModel : ViewModel() {

    // The variable to be passed out of the class
    private val _variable = MutableLiveData<String>() // Private internal class, mutable
    val variable: LiveData<String> // Public external class, immutable
    get() = _variable // With a custom setter to provide the value from the internal class

    init {
        _variable.value = "" // Initialise the internal version of the variable if needed. All uses of the variable in this class should use the underscore version i.e. _variable
    }
}

 

Covariance in Kotlin

Understanding how covariance affects the ability to use Generics in Kotlin.

fun main() {
    val shortList: List<Short> = listOf(1, 2, 3, 4, 5)
    convertToInt5(shortList) // All fine here

    val shortList2: MutableList<Short> = mutableListOf(1, 2, 3, 4, 5)
//    convertToInt6(shortList2) // Not allowed - type mismatch. But why? Surely Short is a sub-type (N.B. NOT a sub-class) of Number? And why did it work with an immutable List but not a mutable one?
    // List is a class, but List<String> is a type. Although we rationally would assume that it should accept a List<Short> if it accepts a List<Number>, it is not the same as a subclass.
    // So we want List<Short> to be a subtype of List<Number>. This is where the covariant keyword comes in - it preserves subtyping when working with Generics.
    // When looking at the Collections interface we can see that immutable Collections are covariant (<out E>) whereas mutable Collections are not - hence why the immutable List worked.

}

fun convertToInt5(collection: List<Number>) {
    for (num in collection) {
        println("${num.toInt()}")
    }
}

fun convertToInt6(collection: MutableList<Number>) {
    for (num in collection) {
        println("${num.toInt()}")
    }
}

fun tendGarden(roseGarden: Garden<Rose>) {
    waterGarden(roseGarden) // By default wants a garden<Flower> and we are passing it a Garden<Rose>, even though Rose is a subclass of Flower
    // This is because the Garden class is invariant, so will only accept Garden<Flower>. When we add 'out' to the Garden class this is resolved, but at a price:
    // We're now restricted and can only use the covariant class in the 'out' position, like an immutable Collection (can read but not add)
    // Function parameters are considered in the 'in' position (invariant) and the function return type is in the 'out' position (covariant)
    // Constructor parameters don't have 'in' or 'out' positions so you can always pass in a covariant class. No danger in this situation.
    // But if you pass in a var of type <T> to a constructor, it can't be covariant because setter needs to be generated. It would need to be invariant or declared as a val.
    // If you have a private function or property you don't need to worry about 'in' and 'out' - they're safe inside the class.
}

fun waterGarden(garden: Garden<Flower>) {

}

open class Flower {

}

class Rose: Flower() {

}

class Garden<out T: Flower> { // We can have a garden of daisies, daffodils etc. 'Out' keyword added to make it covariant.
  // As is done within the declaration is known as 'declaration-site variance'. Java only has 'use-site variance' (see post of same name).

    val flowers: List<T> = listOf()

    fun pickFlower(i: Int): T = flowers[i] // Pick the ith flower. Being overly verbose for readability
//    fun plantFlower(flower: T) {} // Not allowed as T is in 'out' position, not suitable as a parameter. This is to stop e.g. a daisy being planted in a rose garden.
    // This applies to member functions of the covariant class only.
}

// If you are ABSOLUTELY sure you will not pass an invalid type to your invariant class you can suppress the compiler warning by using the <@UnsafeVariance T> annotation.

 

Kotlin Collections – Lists

Using Lists in Kotlin.

// Kotlin often uses Java Collections, but even then you can do more with them
// Completely interoperable with Java
// You can operate on an immutable Collection (add, remove items), but the result will be a brand new instance
// All Collections take a generic type and all the read-only interfaces are covariant (e.g. you can assign a List of BigDecimal to a List of Any)
// If you look at the Collections declaration you will see it only has e.g. isEmpty() and contains(), and is covariant <out E>. MutableCollection adds add(), remove() etc and is not covariant <E>. Cannot assign mutable Collection of e.g. BigDecimal to Any.
// List and Set Collections. Array is considered a Collection but is in kotlin package, not kotlin/Collections. Doesn't implement any Collection interfaces.
fun main() {
    val strings = listOf("spring", "summer", "autumn", "winter") // This is wrong - produces List not ArrayList
    println(strings.javaClass) // returns java.utils.Arrays$ArrayList - can't add or remove anything but can change one of the elements (.set), therefore mutable.
    // Kotlin makes it immutable by not having any functions in the Kotlin List interface that can change the ArrayList
    // However, there are ways around this if the List is passed to Java code so need to be aware!

    val mutableSeasons = strings.toMutableList() // Creates a mutable List from an immmutable one
    mutableSeasons.add("Another season")
    println(mutableSeasons)

    val emptyList = emptyList<String>()
    println(emptyList.javaClass) // returns kotlin.collections.EmptyList. Not much you can do with this list so no need for Java class. Maybe you would return it where your function would usually return an immutable List.
//    println(emptyList[0]) // Still lets you call get() resulting in IndexOutOfBoundsException. Check if empty first if potentially receiving an empty List.

    val notnullList = listOfNotNull("hello", null, "goodbye") // You can use this technique to filter out any potential null results...
    println(notnullList) // ... returning a List of non-null values

    //We can get a standard Java ArrayList by specifically requesting it:
    val arrayList = arrayListOf(1, 2, 4)
    println(arrayList.javaClass) // Mutable List of class java.util.ArrayList

    val mutableList = mutableListOf<Int>(1, 2, 3)
    println(mutableList.javaClass) // Also mutable List of class java.util.ArrayList

    println(mutableList[2]) // We can use [] to get and set items
    mutableList[1] = 20
    println(mutableList)
    mutableList.set(0, 40) // Or we can use the getters and setters
    mutableList.get(2)

    val array = arrayOf("black", "white", "green")
    val colourlist = listOf(array) // Creates a List with one Array item
    println(colourlist) // We probably would have wanted an array of 3 elements, so:
    val actualColourList = listOf(*array)
    println(actualColourList)// or even easier...
    val actualColourList2 = array.toList()
    println(actualColourList2)

    val ints = intArrayOf(1, 2, 3)
    println(ints.toList()) // Converts a Kotlin Array to a primitive array for passing to Java

    // To manipulate Lists:
    println(strings.last()) // Get the last element
    println(strings.asReversed()) // Print them out backwards

    // The long way:
    if (strings.size > 5) {
        println(strings[5])
    }
    // The Kotlin way:
    println(strings.getOrNull(5)) // Will get element 5 or return null

    val ints1 = listOf(1, 2, 3, 4, 5)
    println(ints1.max()) // Gets largest value
    println(actualColourList.zip(strings)) // Only creates pairs for as long as pairs can be made

    val mergedLists = listOf(actualColourList, strings) // Creates a List of 2 Lists
    println(mergedLists)

    val combinedList = actualColourList + strings // Concatenates the 2 Lists
    println(combinedList)

    // To combine two lists and exclude duplicates:
    val strings2 = listOf("spring", "summer", "autumn", "summer", "winter")
    val colourList2 = listOf("black", "white", "red", "black", "red")

    val noDupsList = colourList2.union(strings2)
    println(noDupsList)

    // To remove duplicates without having to combine the List with anything else:
    val noDupColours = colourList2.distinct() // Returns a new list
    println(noDupColours)
}